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1. I N T R O D U C T I O N  

In string theory the fundamental objects are one dimensional and 
propagate in space-time E1,D. As a string propagates it sweeps out a 
Lorentzian world sheet E L. Recall that the Teichmfiller space ~ , ,  is the 
space of conformal structures on a topological surface S of genus p, where 
two structures are equivalent if there is a conformal map between them 
which is homotopic to the identity (Bers, 1981). Physicists incorporate 
Teichmfiller space into the theory by moving between the Euclidean and 
Lorentzian conventions for the world-sheet signature with lack of concern. 
So, with the theory of Riemann surface an important mathematical tool for 
string theory, "The string is described by immersion X~'(a ~) of its (com- 
pact) two dimensional world sheet with coordinates a s into Euclidean 
space-time." In this paper we will not reject the Lorentzian signature, but 
just the-opposite, we will investigate the consequences of the fact that the 
signature of a metric of a string world sheet Z L immersed into ~I,D is a 
Lorentzian one. We will show that for such a Lorentzian world sheet Z L 
any "observer" (identified with a concrete unit timelike vector e0 ~ ~ ,D)  
"produces" some curve in an appropriate Teichmfiller space ~ , n  which we 
will call a P-line (P for "physics"). Here p denotes the genus of ZL, p~> 2, 
and n denotes the number of punctures. Next we prove that such a P-line 
has to be an infinite geodesic in the Teichmiiller metric of ~ ,n .  

In Section 2 we construct our P-line in two different ways: first, using 
a timelike (singular) vector field v 1 o n  E L determined by e o ~  i'D and 
second, using a pair of transverse measured foliations determined on E L 
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also by e 0. Although the second method is much more elegant, the first one 
appears to be useful also, especially when we pass to a physical interpreta- 
tion. The relation between singularities of the vector field vl (and the 
Poincar6-Hopf theorem describing them) and zeros of holomorphic 1-form 
distributions determining a pair of transverse measured foliafions (and the 
R ieman~Roch  theorem describing them) are considered at the end of 
Section 2. 

In Section 3 we investigate the so-called harmonic P-lines, i.e., the case 
when the immersion X:E--* ~I+D determined by the fixed vector eoe E1.D 
induces the harmonic homothetic Gauss map g: Z ~ G2,D+ 1; here Z is the 
underlying manifold of the world sheet Z L. 

In Section 4 we introduce Jenkins-Strebel differentials and give a very 
short description of some of their properties which we need later. We use 
the properties of b-boundary points of the Bers embedding of a Teichmfiller 
space to show strong consequences follow from the fact that the quadratic 
differential related to the P-line is a Jenkins-Strebel one. In this case the 
endpoints of any P-line are represented by regular b-groups~ Thus these 
endpoints describe the decomposition of our world sheet onto one or more 
Riemann surfaces which may be thought to have been obtained by cutting 
along an admissible system of Jordan curves (determined by the above 
mentioned quadratic differential) and then by gluing a punctured disc to 
each side of each cut. So if we can relate a physical object to the Lorentzian 
world sheet E L then this object has to be created (from other objects) and 
has to decay. 

These considerations suggest that the set of "Lorentzian observers" 
eo'S who can observe the same physical properties has to be discrete. More 
exactly, we obtain that a discrete, although infinite subgroup of the 
Lorentzian group SO + (1, D) is the symmetry of our theory. To see this all 
we need is the existence of a P-line determined by a Jenkins-Strebel (JS) 
differential with only one cylinder of each type (i.e., horizontal and vertical) 
whose heights and circumferences are equal to each other, respectively. 
This is the subject of Section 5. 

In Section6 we describe P-lines (which are geodesics in the 
Teichmfiller metric) using the Weil-Petersson metric on ~ ,n .  By introduc- 
ing Fenchel-Nielsen coordinates we can show that P-lines corresponding 
to JS differentials with 3 p - 3  cylinders can be related to a Hamiltonian 
system with respect to the Weil-Petersson-Kaehler symplectic form co 
on Jp, n" 

In Bugajska (1990, 1991) we construct reductions of maximally 
unstable (associated to concrete spinor structures), holomorphic SL(2, C) 
bundles (over Riemann surfaces lying on a P-line) to the SU(2) group. 
Since on Riemann surface G-bundles with connection are equivalent to 
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holomorphic G c bundles with a reduction to G and since S U ( 2 ) c =  
SL(2, C), we obtain appropriate SU(2) bundles with connection. We can 
interpret this result as a gauge field of weak interactions. So we obtain 
that these completely different approachers to our P-lines Edescribed in 
Section4 and Bugajska (1990, 1991)] yield the same physical situation, 
namely decay and creation of objects related to a world sheet Z L. 

2. P-LINES AS T E I C H M U L L E R  GEODESICS 

Let us assume that we have some one-dimensional object in (1 +D ) -  
dimensional Minkowski space-time ~i. Let us assume that as this object 
propagates in ~I,D it sweeps out a Lorentzian world sheet Z L. Moreover, 
let us assume that this world sheet forms a connected, orientable manifold 
E of genus p >7 2. Now we can ask which Riemann surfaces (i.e., which com- 
plex structures) can be related to Z L, or equivalently, we can ask how we 
can describe Z L in an appropriate Teichmfiller space Jp,,.  

Z L, as a manifold, carries a GL+(2, ~) structure, i.e., there exists a 
natural GL+(2, ~) principal bundle CoL+ of oriented linear frames over its 
underlying manifold E. The immersion X of Z into Minkowski space-time 
~I,D determines a concrete reduction of the bundle ~cL+ to the SO(l, 1) 
principal bundle is (a.e.), i.e., 

X: E"-~I'D:zz~GL+"-')'~s (2.1) 

Next, any complex structure on Z will be given by a reduction of the ~ar+ 
principal bundle to the GL(1, C) subgroup. Since GL(1, C ) ~ C * ~  
S O ( 2 ) x N  +, we see that we have one-to-one correspondence between 
complex and conformal structures on E. To find which of them can be 
related to our world sheet, first let us consider the two-dimensional real 
vector space N2. 

On N2 the family of oriented linear frames corresponds to elements 
of the group GL+(2, R). Moreover, each linear frame defines uniquely a 
Euclidean structure on N2 as well as a unique Lorentzian structure on it. 
Let us fix one such frame, say {Vl, u and let us consider the Loren tz ian  
structure ~1.1 determined by this. 

We see (Fig. 1) that Euclidean structures N2.o on N2 induced by 
two Lorentzian equivalent frames {v~, v2} and {v]', v~} are conformally 
inequivalent. In other words, we see that to any Lorentzian structure on N2 
we can relate a one-parameter family of inequivalent conformal structures. 
[-We recall that the set of all conformal structures on N2 can be given 
by elements of GL+(2, ~)/GL(1, C)-~A= {z~C;  [zl < 1 } . ]  This one- 
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parameter family corresponds to the set of the future-oriented timelike unit 
vectors of R 1'1 and can also be parametrized by the parameter ct of the 
SO(I, 1) group. 

Now let us notice that the light directions are orthogonal for all 
(mutually conformally inequivalent) Euclidean structures determined by 
the family {v~, V~}~e(_~/a,n/4). In other words, let us notice that we can 
introduce all of those Euclidean structures by frames {n~, n~} which differ 
from each other merely by change of units in the same directions instead 
of by frames {v~, v~}. Namely, if fl denotes the angle between v~ and n2 
(see Fig., 1), then the ratio of the "~ units" in the nl and n2 directions 
measured in ~ = 0 coordinates is 

a (;) ~ = t g  fl; f l = ~ - ~ e  O, (2.2) 

Let us come back to our world sheet E L and to the immersion X, (2.1). 
It can be seen that any fixed timelike vector eoeR I'D defines a timelike 
vector field vl on E L almost everywhere (or equivalently it determines a 
sections So of the principal bundle ~s of Lorentzian frames over E L a.e.). In 
this way we obtain a Riemannian structure, say Eo, on the underlying 
manifold E of E L. (This Riemannian structure has to be singular and we 
will discuss this point at the end of this section.) However, as in the R E 
case, we obtain simultaneously a one-parameter family of conformally 
inequivalent Riemannian structures E~ on E parametrized by e e SO(I, 1) 
(E~ is determined by a section s~=sooe, ~e SO(I, 1), exactly in the same 
way as E o is determined by So). This family forms a c u r v e  {~'~c~)ctE(--lz/4,~z/4) 
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in the appropriate Teichmfiller space which we call a P-line and we will see 
that this P-line is an infinite geodesic in the Teichmiiller metric of ~ ,n .  

When we fix a pair (So, id) as an origin of the Teichmiiller space ~ . , ,  
then any element r E @ , ,  can be considered as some concrete complex 
structure, say $1, together with a homotopy class of quasiconformal maps 
from So to $1. Hence, by definition, all homeomorphisms between two 
points in @,,  are homotopic quasiconformal maps which are differentiable 
almost everywhere. We recall that for a quasiconformal map f :  So -* S~ the 
deviation from conformality at any differentiable point x e So [measured 
by the ratio K z ( x  ) of the axes of the infinitesimal ellipse at f ( x ) ,  which is 
the image of an infinitesimal circle centered at xJ is finite. For any 
quasiconformal map f :  So ~ $1 we define the global dilatation K f  as the 
essential supremum of K f ( x )  over all x s S o .  Teichmiiller has shown 
(Ahlfors and Sario, 1960) that is any homotopy class of quasiconformal 
maps there exists a map with minimal global dilatation. It is called the 
Teichmiiller map and its Beltrami differential /~ (called in this case a 
Teichmiiller differential) has the form 

fe~=/~=k]_~, 0 ~ < k < l  (2.3) 

where q = ~b dz 2 is some holomorphic quadratic differential on So which can 
have only zeros and poles of the first order in the punctures (here fz 
denotes (?f/Oz and f e  - ~3f/(3~). 

Any holomorphic quadratic differential q on So defines the horizontal 
line field [by the condition qi(z)dz2> 0, for ~b(z)r 0] and the vertical line 
field [by ~b(z)dz2< 0]. Moreover, it defines a singular fiat metric on So 
induced by [~b(z) m dzl. Away from the singularities of q (i.e., zeros and 
poles in punctures) we can locally introduce the so-called natural 
parameter 

w= f x/~dz=u+iv (2.4) 

with respect to which the horizontal and vertical line fields are described by 
v = const and u = const, respectively. In these coordinates the quadratic 
differential q has the form 

q = ~(z )  dz 2 = dw 2 (2.5) 

So, in the natural q parameter w our differential q is represented by the 
function ~b-= 1. The Teichmiiller map f :  So ~ $1 can be seen as a stretch 
map (k, q) with respect to the natural parameter w of q, i.e., 

u ~ u ' = K  m u  l + k  
K =  (2.6) 

v ~ v' = KU2v 1 - k 
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Now, the one-parameter family of Riemann surfaces to which So is mapped 
by the (k, q) stretch map (2.6) forms exactly an infinite geodesic l ( t )  in the 
Teichmiiller metric of Jp,,,, where tanh t = k (Nag, 1988). The geodesic l ( t )  

is usually called the Teichmiiller line and the part r ( t )  of l ( t )  with t >/0 (i.e., 
k >~ 0) is called a Teichmfiller ray. 

Coming back to our P-line {Z~}~ (-Tzu/4.rc/4), we observe the following 
situation. For  each ~ e (-re/4,  re/4) we have determined the fields (n~, n~) of 
light vectors whose lengths vary with e according to (2.2). Let us introduce 
local coordinates (x ~, y~) related to vector fields (nT, n~), respectively 
(nl-= n ~ n2 =-n~ For  each Z~ its complex structure can be described by 
local coordinates 

w ~ = x ~ + iy  ~ (2.7) 

If we denote the appropriate local parameter Wo on Eo by Wo =- z = x + iy,  

then we have 

w ~ = w ~ ( z ) = x ~ + i y ~ = A ( t g f l ) l / 2 x + i ( c o t ~ ) l / 2 y )  (2.8) 

where/~ = rt/4 - e, c~e (-re/4,  re/4), and A e ~*. So we see that the mapping 
w ~  z ~ w ~ ( z )  is quasiconformal for each e e (-~z/4, re/4) and satisfies 

tg/~-- 1 
w ~ w ~ = tg c~ ~ (2.9) tg/~+ 1 z "wz 

(notice that Itgel <1) .  In other words, we realize that the parameter 
z -  w ~ (introduced by nl, n2) is the natural parameter of some quadratic 
differential q on Eo, i.e., 

q = dz 2 (2.10) 

and that each Y.~ can be obtained from Zo be a generalized affine stretch 
map (k, q) with k =  tg ~, ~ e (-7r/4,  re/4). In these coordinates the Beltrami 
differential # =  w ~ / w ~  has the form # = t g  ~. 1/1, i.e., it is a Teichmfiller 
differential. Thus, our one-parameter family {E~} of Riemann surfaces 
determined by some concrete "observer" (i.e., fixed timelike unit vector 
e0 ~ ~1,o) forms an infinite geodesic in the Teichmiiller metric on ~ ,n .  So 
we have shown that the following proposition is true. 

P r o p o s i t i o n  2 .1 .  Any P-line is a Teichmiiller line. 

We can also see this using the approach of measured foliations. 
Namely, we have the following situation (from now on, for simplicity and 
without loss of generality we will assume that the manifold I2 is compact). 
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The timelike vector field v on 12L introduced above determiners a pair 
nl, n2 on lightlike vector fields. Now the pair of vector fields {nl, n2} can 
be used not only to define a complex structure J on Z [by J .n l ( rn  ) = 
nz(m)], m 6 Y~, but also to define a locally flat (singular) Riemannian metric 
g on Z, and a pair of measured transverse foliations. By Hubbard and 
Masur (1979), any pair of transverse measured foliations determines both 
a conformal structure 12o on Y~ and some concrete holomorphic quadratic 
differential q on 12o. Since any holomorphic quadratic differential defines a 
unique infinite Teichmiiller geodesic, we can easily check that this geodesic 
is exactly our P-line {12~}~so(1,1). 

The horizontal and vertical distributions of any holomorphic 
quadratic differential q = ~ ( z ) d z  2 are determined by a pair {dl,~b2} of 
local 1-forms ~bl = Re q61/2 dz, ~b 2 = Im r 1/2 dz which satisfy 

~bi= _+~b'i, i =  1, 2 (2.11) 

on the overlap Uc~ U' of any two charts U, U' on Z0. If the cocycle defined 
by (2.11) determines a trivial line bundle over 2o, then the differential q is 
called orientable; if the corresponding bundle is not trivial, then q is non- 
orientable. In the former case q is the square of some holomorphic 1-form, 
i.e., q = co ~ and ~o = ~ i  -[- i~2- In this case the holonomy group of a metric 
(of zero curvature) which arises from q is trivial insofar as we can construct 
(singular) global vector fields nl, n2 dual to ~bl, ~b2, respectively. 

Since the Euler class of the underlying manifold Y does not vanish 
(g/> 2), we cannot construct a tangent line bundle over Z. This means that 
the Lorentzian structure E L has to be a singular one or equivalently that 
any timelike vector field v on Y L has to be singular. This implies that the 
two lightlike vector fields n1(m) and n2(m) determined by v(rn) have a 
singularity at the same points of I2 as v(m) as well as that these singularities 
are of the same kind. For  any vector on 20 the Poincar6-Hopf theorem 
tells us that the sum of its indices at zeros is equal to the homological Euler 
characteristic ) ~ ( Z ) = 2 - 2 g .  On the other hand, by the Riemann-Roth 
theorem we know that the degree of the divisor of the distributions ~bi, 
i = 1, 2, of holomorphic one-forms is equal to 2 g - 2 ,  i.e., the singularities 
of vector fields ni, i =  1,2, are at the same points as the zeros of 
holomorphic one-forms ~bi, i =  1, 2, and they have the same degree. 

3. H A R M O N I C  P-LINES 

Since in our approach to string theory we are giving primary relevance 
to a Lorentz structure on t;, we should know if this fact implies some addi- 
tional restrictions on the possible Riemannian structures on our world 
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sheet E. According to the Nash-Green  theorem (Green, 1970), there always 
exists an isometric embedding of E L into R k'k with k =  50. For  physical 
reasons we assume that our world sheet can be isometrically immersed into 
a vector space of signature (1, D), i.e., into at most 51-dimensional real 
vector space. Now let us notice that 51 is exactly the dimension of the 
Euclidean vector  space N51 which admits an isometric embedding of any 
two-dimensional Riemannian manifold. So we see that the fact that we give 
fundamental relevance to the Lorentz structure does not introduce any 
additional restrictions onto possible Riemannian structures of our world 
sheet. 

Let us consider the situation when the Riemannian structure on our 
world sheet related to a concrete "observer" e 0 e N  i'D possesses some 
concrete properties. The most  regular situation would be when X: 
E ~ ~ + D realizes a minimal immersion into ~1+ o [we use the same letter 
X as in Section2 to denote the isometric immersion of Z into R~+D 
uniquely determined by (2.1) and by e0 E R~,D]. However, it is known that 
although any noncompact  Riemannian 2-manifold admits a proper  embed- 
ding into Nk, k > 5, by a harmonic map, it is not necessarily a conformal 
one. Moreover,  there are no compact  minimal submanifolds in Nn, n > 3. 
So we see that  minimal immersion into N~+D is not the case with high 
probability. The next, also very regular situation appears when an immer- 
sion X into R ~ § D realizes a minimal immersion into the hypersphere S D of 
NI+D. In this case the Gauss map associated to X is a harmonic and 
homothetic one. 

3.1. Harmonic Maps 

Let Z be a surface equipped with a metric h and let M be an 
n-dimensional Riemannian manifold with metric g, n > 3. A map  

f :  E - * M  (3.1) 

is called conformal if the angle measurement associated with the induced 
metric ~ on E coincides with the angle measured with respect to h, 
whenever ~ is nondegenerate. A map  f is minimal if it is conformal and 
extremal with respect to the ordinary area integral 

S = f~ d6e (3.2) 

The differential of f can be viewed as the f - t (TM) valued 1-form on Z, 
i.e.~ 

df e F(T*E| f- ' (TM)) (3.3) 
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where F( . )  denotes the set of sections of corresponding bundle and T*Z 
denotes the cotangent bundle over Y. The second fundamental form B is 
the covariant differential of df: 

B = Vdf  (3.4) 

and a conformal immersion f is minimal if and only if its mean curvature 
vector field H 

Hg dr trg B (3.5) 

vanishes (Eells and Sampson, 1964). 
The energy E ( f )  is defined by 

E ( f )  = �89 Idf(x)12 (3.6) 

where [df(x)[ =: 2e( f ) (x )  is the Hilber-Schmidt norm of the linear map 
df(x): T x M ~  Tf~x)M..A map f i s  harmonic if and only if it is an extremal 
of the energy integral E. If we define the energy 1 metric y on Y~ as 

7 = e ( f )h  (3.7) 

(it is the only metric among all conformal ones on Z for which f :  
(Z, ~ ) ~  (M, g) has energy function 1), then we can say that a map f, (3.1), 
is minimal if and only if it is harmonic with the energy 1 metric equal to 
the induced metric i.e., 7 = g. For harmonicity of f it is enough when ~ is 
a Codazzi tensor for the Riemannian metric ~ and the y mean curvature 
vector field 

/-F = try B (3.8) 

vanishes. 
In the local coordinates the harmonicity condition can be written as 

the Euler-Lagrange equation for the energy functional 

M ~ ~fPOff. h~=O ' p = l ,  . n, i , j = l ,  2 (3.9) Af  u + F ~ p  (~Oi O 6 j  " " ' 

They are nonlinear partial differential equations of elliptic type. Usually we 
introduce the so-called tension field z ( f ) ~  F ( f - I ( T M ) )  given by 

z" ( f )  = h~(VdjO~, # = 1 , . . . ,  n, i, j =  1, 2 (3.10) 
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and we write equation (3.9) in the form 

~ ( f )  = 0  (3.11) 

If f is an isometric immersion of E into ~" and if g denotes its corre- 
sponding Gauss map 

g: 1~ ~ G2, . 

(where G2,, is the Grassmann manifold of all oriented planes through a 
point 0 in an n-dimensional Euclidean space Rn), then the tension field of 
g is equal to (Ruth and Vilms, 1970; Takahashi, 1966; Muto, 1980) 

r ( g )  = V H  

So we see that if E is immersed wi.th parallel mean curvature vector field, 
then the Gauss map g is a harmonic one. If f realizes a minimal immersion 
into the hypersphere S n - l C  ~n, then its Gauss m a p g  has to be addi- 
tionally homothetic. In this case f satisfies 

with 2 = 2/a 2 and a is a radius of S n- 1. The components of the mean 
curvature vector are eigenfunctions of the Laplacian on (E, h) belonging to 
the same (after a suitable parallel displacement) eigenvalue L Since each 
surface (Y~, h) is an Einstein manifold, i.e., its Ricci tensor K o satisfies 
K;j = ~vh U and since the Gauss map is homothetic, i.e., G,7 = cZho. [-where Gij 
is a metric on g(Y~)] 

= 1(c2 + 

So in this case the Laplacian on (Z, h) has to have at least one eigenvalue 
2 > x / 2  of multiplicity ~>3. In particular, if (E,h) is such that the 
immersion is full in R ", then there exists at least one eigenvalue 2 > x/2 of 
multiplicity ~> n. 

3.2. Harmonic P-Lines 

Let us come back to an immersion of our world sheet E L into ~I,D. 
The Minkowski structure of RI,D together with a fixed timelike vector 
eo~ NT i'D determine a unique Euclidean structure r/ on NI+D. Of course 

= diag(1, 1 , . . . ,  1) in any of its orthogonal bases. Let e denote one of the 
orthonormal bases whose first component is equal to eo. 
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The metric I introduced on Z by X can be written 

0X u 0X ~ 
I u= ~/~ 06~ 06i 

Let us represent Z o by (Z, h ~ and Z= by (2, ha), respectively. We recall 
that h ~ and h = are locally flat, singular Riemannian structures on Y~ 
uniquely determined by the quadratic differential q (namely r/~ is q-metric 
and h = is q=-metric, where q~ is the terminal differential of the appropriate 
Teichmfiller map given by q). The vectors 0X/06o and OX/D6, are 
orthogonal in (Nu, rl), N = D +  1, and have the same length [i.e., I~=  
diag(1, 1) in these parameters]. Let X: (Y~, h ~ ~ (RN, ~/) be the isometric 
immersion which realizes a minimal immersion into a sphere s N - l c  
(NX, ~/). From the previous section we know that this means that 

02X/z 02Xp 
+ ~ 0 6  ~ - 2X ~, 2 > 0 (3.12) #62 

and the associated Gauss map is harmonic and homothetic. 
Let us pass to a complex structure on Y~ related to Z~ = (Y~, U). The 

natural q~ coordinates are {66, 6]} = {60, tg ~6~ } and we have 

h ~  diag(1, 1) =I•, h~ = diag(1, ctg 2 ~) = I~. (3.13) 

h= = diag(1, tg2 ~) h=' = diag(1, 1) (3.13') 

~ (0, ~/2) 

here the index 0 corresponds to c~ = 7r/4 and the prime denotes appropriate 
entries with respect to the {6;, 6]} parameters. Now if we consider X: 

~ ~N as 

X: (}~, h 0) ~ (~N, 11) (3.14) 

then the energy E(X) = 1, e(X) = 1 and the energy 1 metric 7 = ho = / .  If we 
treat pointwise the same map X as 

(3.15) 

then 

1 f~ h~,/# n 0X u 0X v (det h~') 1/2 d6'o/x d6'~ r 1 E(X)=~ _ .,~ 06,i 06,j (3.16) 
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and 

1 =, o @X~@X ~ l ( l + c o t 2 ~  ) (3.17) e ( X ) = ~ n  rl,~ @@,i @3,j 2 

So the energy i metric 7'= of the immersion (3.15) in prime coordinates is 

y='= �89 + cot 2 ~)h ~' (3.18) 

and the Laplace-Beltrami operator associated to ~ '  is 

1 (@2 c~2,~ 
aye,= - ~  (1 + c o t  2 ~) \@-~o2 + 0-~2) (3.19) 

Proposition 3.1. If map X: (s h ~ ~ (A N, /1) realizes the minimal 
immersion of Eo into a hypersphere Sr u 1__+ (AN, 0) then X: y L__+ ~ , x - ~  
satisfies the linear wave equation azx/c362 -02X/i3~521 = 0 if and only if X: 
(Y~, h ~') --+ S N- ' is harmonic for each ~ ~ (0, 1t/2). 

Proof  It is based on the following Milnor theorem (1983). 

Theorem 3.1. The immersion X: (2, h ~') ~ (NN, 0) satisfies 
Cod(7~',I  ') and A ~ , X = 2 ~ X  for 2 ~ > 0  if and only if X: (Y~,h~)~ 
S N - l c  (A N, ~1) is harmonic with r2= 2/2~. 

The notation Cod(7 ~', I ' )  means that I '  satisfies the classical Codazzi-  
Minardi equations with respect to 7 ~' (as a metric). This forces the tangent 
component of the tension field of the immersion (3.15) to vanish. When X 
is conformal, then ~ ' = I ' ,  so that Cod(/ ' ,  I ' )  is automatic. However, we 
meet this case only for ~ = re/4, i.e., for h ~ 

In a general case, with any immersion of (s h ~') into (NN, 0) there is 
an associated quadratic differential ~ = ~p dz '2, z' = 6'~ + i6'o on (2, ha'). 
Namely, if the induced metric of an immersion is 

I '  = E d6~1 + 2F d~'~ d6'2 + G d6~ 2 (3.20) 

then 

q~ = E -  G - 2iF (3.21) 

(note that ~ = 0 if the immersion is a conformal one). In our case for the 
map (3.15) we have 

= (1 - cot 2 ~).dz '2 (3.22) 
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i.e., ~ is a holomorphic quadratic differential on s (Z, h=). Since it is 
known that q is holomorphic if and only if Cod(7 =', I ') ,  we see that the first 
property of the Milnor theorem is fulfilled for any ~ (0, z/2). In the 
language of Teichmiiller space, we can say that Riemann surface Z= can be 
obtained from Y'o by the Teichmiiller map determined by the unique 
holomorphic quadratic differential on Z o for which (go, 6~) are the natural 
parameters. Now it is easy to see that the just obtained holomorphic quad- 
ratic differential q, (3.22), is nothing else but (up to a positive constant) the 
terminal differential on ~3~ of this Teichmiiller map. 

Now let X: (Z, h ~ -+ (RN, ~/) satisfy 

02X 02X 
0&~ - ~  2 = 0  (3.23) 

This fact together with formula (3.12) and 

give 

02 0 2 02 0 2 
+ cot 2 ~ (3.24) 06j+oa?-oag 

02X 02X ,~ 
+ ~--;~,~ = z (1 + cot e ~)X (3.25) 

o&6 2 ooi- z 

so according to Theorem 3.1 [we recall that we have Cod(7 '', I ' ) ] ,  the 
immersion X: (Z, h ~') --+ S N -  1 is a harmonic one. Conversely, if X satisfies 
(3.12) and (3.25) (i.e., if the corresponding map into hypersphere is 
harmonic), then 

1 0eX 1 02X 0 
(cot ~ - 1)-~o2 + ~ (1 - c o t  2 ~)-O-~= (3.26) 

i.e., X: (E, h ~ -+ (~N, I/) --= X: }-~L _.4 ~l.n sxatisfies 02X/062 o -- 02X/O&21 = 0. So 
our assertion is proven. 

If for each a ~ (0, z/2) there exists an affine map A~ ~ G L + ( N ,  ~ )  such 
that 

X: (]~, h ~r ~ (~N, ~ )  (3.27) 

is a conformal one [here rff=diag(1, 1 . . . . .  1) in a base d = e . A , ] ,  then 
the word "harmonic" in our proposition can be changed for "minimal." We 
meet such a situation if, for example, the quadratic differential on s deter: 
mined by a pair of measured foliations (60, 61) is a Jenkins differential with 
only one horizontal and only one vertical cylinder. 
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The case when the P-line consists of elements which, with respect to 
their "natural parameters," can be harmonically immersed into the 
corresponding hypersphere seemes to be appealing for its regularity and 
simplicity. However, in this case We have to find an other than N am b u -  
Goto  action for the world sheet of our string. Namely, let us notice that 
although equation (3.23) has the same form as the linear wave equation 
which minimalizes the Nambu-Go to  action, it is written in "light coor- 
dinates" instead of "time and space coordinates." It is easy to check that if 
assumptions of Proposition 3.1 are fulfilled (i.e., our P-line is harmonic), 
then Na mbu-Go to  equations cannot be satisfied at all. So if we believe that 
the Nambu-Go to  action describes a free string, then the harmonic P-line 
could be related to a self-interacting string. 

4. JENKINS--STREBEL DIFFERENTIALS  AND DECAY OF A 
W OR LD SHEET 

Let {60, 61} be local coordinates on our world sheet E r which are 
determined by the light vector fields n, and n2 as before. As we have seen 
in Section 2, they form leaves of a pair of transverse measured foliations. 
These leaves are horizontal and vertical trajectories of some concrete 
holomorphic quadratic differential q = d z  2, where z=i6o+61. Local 
natural parameter on the Riemann surface Y'k belonging to the Teichmiiller 
P-line lq are 

6; = (cot ~)l/2ao, ~ e (0, rr/2) 

6] = (tg ~)1/261, Z' = ia~) + r 

If our P-line is a harmonic one, then we have (almost everywhere) 

(~2Xp 2 ~2X'u 
c~6~ = 2  Xu' 062 - 2  X*', /~=1 . . . . .  I + D  

i.e., X " are periodic functions of 60 and 61 (a.e.). We see that both their 
periods ci, i = 0, 1, are equal, i.e., 

2.2 t/2r~ 
Co = c ,  = c = ( _  ;~)1/2 

But this means that our "physical" differential q has to have closed 
horizontal and closed vertical trajectories. Holomorphic quadratic differen- 
tials which satisfy this property are called Jenkins-Strebel differentials. 
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4.1. Jenkins-Strebel  Differentials 

Let us recall some properties of a quadratic differential q with closed 
horizontal trajectories (Strebel, 1984) (vertical trajectories of q are the 
horizontal ones of - q ) .  For such quadratic differentials the critical graph 
Fq, i.e., the set of critical trajectories with their critical endpoints (zeros 
and simple poles in punctures) is compact. This implies that Z o - F  q is 
covered by ring domains Re c Y'o. A ring domain Ri in 52 o is said to be 
a homotopy type 7 if a Jordan curve ~0 ~Re which separates its two 
boundary components is freely homotopic to ~/. 

Let ~ be any local parameter on Zo. In this parameter our quadratic 
differential q will have the form 

q = dz 2 = r d~ 2 (4.1) 

where z is its natural parameter. When we cut the characteristic ring 
domain Ri of q along a vertical arc connecting its two boundary com- 
ponents, then a branch of ~ x ~ d r  maps it into a horizontal 
rectangle Se in the z = 6i + i6o plane (Fig. 2). 

Since the horizontal and vertical trajectories of q are smooth curves 
along which 

arg dz2= arg d?(~) d~z= {Orr 
for horizontal arc 

for vertical arc 

the horizontal and vertical sides of S i have lengths 

ai = f~ ]~b(~)[ 1/2 [d~[ (4.2) 

and 

bi = aiMi (4.3) 

bi 
z 

q~(V,) 

S~ 

Fig. 2 
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[here M; is the modulus of a ring domain R,.; it is defined as 
Mi = (1/2n)log(rz/rl) if rt < I~[ < r2 is its conformally equivalent annulus]. 
To demonstrate some properties of Jenkins-Strebel differentials we will, for 
simplicity, assume that q has only one horizontal cylinder. The norm of 
q = dz 2 = ~o(~) de 2 which has only one ring domain R is the Euclidean area 
of S, i.e., 

IIqLI = fR ko(Z~)l dudv=fs drod6l=ab (4.4) 

R is swept out by the closed horizontal trajectories of q which have length 
(in the q-metric Iq0[ 1/2 IdOl) equal to a, and b is the height of R. Since the 
modulus M of R is a conformal invariant (and is uniquely determined by 
a simple loop y on Zo), the height of the cylinder of a given homotopy type 
on Z0 uniquely determines a quadratic differential q. 

Let us consider a holomorphic map 

p(~) =exp {-- 2nil d~}=W '-ad [q)(~)] 1/2 (4.5) 

which transforms the characteristic ring R into the maximal q-annulus A of 
type y. In terms of the parameter W, q has the representation 

( a ' ~  2 1 
q = dz 2 = qg(~) d~ 2 = - 12-~J - ~  d W 2  (4.6) 

and the affine stretch of magnitude K m = (tg fl)m, fl e [n/4, re/2), along the 
horizontal trajectories of q .is realized in the annulus A as a contraction 
along concentric circles (Marden, 1980) (Fig. 3). 

The Teichmtiller map f (with Beltrami coefficient/~ = k ~/I ~ol) from s 
to another Riemann surface on a Teichmiiller line lq can be expressed as 

f = t~o d o  p (4.7) 

where p is the map (4.5) of the cut Zo onto the annulus A, and ~r is its 
radial contraction, 

d ( W )  = Wk = WI wl  ~/k- (4.8) 

and ~ is the image annulus into the Riemann surface that is obtained by 
identifying appropriate arcs on its boundary. 

If we normalize p such that p ( E o - F q ) =  { r<  I WI < 1}, then the 
situation is as shown in Fig. 4. 

To understand better what is happening when K--+ 0% let us consider 
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Z ~ Z k  

- ~ ~ Sk 

r2 = e 2 . M I  x 

Fig. 3 

following maps (Masur, 1975). First let us normalize the map p: R ~ A 
such that A =  { r<  IW[ <1}.  Now let us cut A along the Jordan curve 
corresponding to I WI = ~,/r (i.e., along the central curve of A). Let A 1 and 
A 2 denote the annuli r < wI < ,,/7 and ~ < ] WI < 1, respectively. Let us 
reparametrize A by ,W '=  r/W. Now, for each K >  1 we glue the annulus 
B ~ =  {W'l(rK)l/2< IW'l < r  m} to A ~ along ~ without a twist to form A~ 
and glue B ~ =  { W [ ( r K ) ' / 2 < t W  [ < r  U2} to A 2 along ~ without a twist to 
form A~. Finally, W ' =  (rK)me -i~ and W =  (rZ~)l/2e i~ are identified to form 
R x, the so-called K model of R. 

An affine stretch W ' ~ W ' I W ' I K  i of A1 onto A1 and 
W--> W]W[ K 1 of A 2 onto A~: extends to the critical trajectories of 
q = dz 2 = ~o(~) d~ 2 to become a quasiconformal map fK of Zo onto Y~K. It 
can be seen that the K-model ZK of E0 is conformally equivalent to f,~(Z0), 
where fK is the Teichmiiller. map with complex dilatation # =  -kCp/l~ol, 

Fig. 4 

902/32/8-5 
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R = 1 - m o d e l  RX=K-model 

Fig. 5 

k>~O, k = ( K - 1 ) / ( K + I ) .  There is a conformal embedding lK of 
Z0--cr ~Y~K which embeds each A i in A K, i =  1, 2, by 

iK(W)= W, iK(W')= W' 

The two sides of cr correspond under iK to the two curves on s along 
which B% is glued to A i. This procedure indicates that at the "end" of a 
geodesic ray we should glue the punctured discs B 1 = { W'I0 < I W'l < w/7} 
and B 2= { W I0 <]WI <,v/-r} to the two sides of cr without twist. This 
model serves as a model for the surfaces (or su r face~epend ing  on 
whether cr is dividing or not) with additional 2-punctures on the boundary 
of Teichmfiller space Jp, n" However, to investigate the problem of 
convergence of geodesic rays ( K , - q )  where q is a nonzero quadratic 
differential with closed horizontal trajectories we should pass to the Bers 
embedding of ~ , n  into the finite-dimensional complex Banach space 
B2(F, L) of bounded quadratic differentials. 

4.2. Boundary of T(~:o) and b-Groups 

For any ~o s Bz(F, L) the solution W~ of the Schwarzian differential 
equation {We, z}=q~ F{W,z}:(Wtt/Wt)I-I(w"/w') 2] induces a 
homomorphism 09: F ~  M6b 

0~o(r) = r ~ = WoFW~ 1 c M6b 

The group F ~ is called the monodromy group of the differential equation 
{ W~, z} = q~. For ~o e Jp ~ T(F) -~ T(Y,o) the group F ~~ is quasi-Fuchsian 
with precisely one unbounded component AI = W~o(L) of its domain of dis- 
continuity f~ and one bounded component A2 = Wo(U). Now A1/FO~ Z o, 
whereas A J F  ~ is conformally equivalent to the "variable" Riemann surface 
Z~o = ~o e q)(T(F)) (Gardiner, 1987). 

The image of the Bers map q~ is bounded in B2(F, L) and the iden- 
tification of Jp with @ ( ~ ) B 2 ( F , L )  determines a boundary C~p which 
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is called the complex boundary and which depends on the choice of the 
origin Zo (or equivalently on the choice of _F=M6b~).  For  each 
4bE0~--+Be(F, L) the group F ~ is always Kleinian and has only one 
invariant component A 1 = Wo(L) of s Such groups F ~ are called b-groups. 
Any other component A of f~ of F ~ is simply connected and not invariant. 
If F~ denotes the stabilizer of A in F ~, then A/F ~ is a finite Riemann 
surface of type (p',n'). So, for ~b~c0~ the component A2= W~(U) is 
the (perhaps empty) union of all noninvariant components of discontinuity. 
In this case we write 

f~/r+ = AI/F + + a'/r+~, + A"/r+~,, + � 9  + a~/r+~ 

o r  

f l /F  ~ = Z o + S I + S 2 + - . . + S k  

It turns out that "almost all" b-groups are totally degenerate, that is, satisfy 
A 1 = f~. A regular boundary group F ~ represents a Riemann surface ~,o and 
one or more surfaces $1, $ 2 , . . . ,  Sk which may be thought to have been 
obtained by drawing allowable Jordan curves on Eo and then contracting 
each to a point on Eo. So we can say that for a regular boundary point 
(b-group) Az/F ~ is a finite union of Riemann surface which topologically 
may be derived from Zo by cutting along an admissible system of Jordan 
curves 71, - . . ,  7k and by gluing a punctured disc to each side of each cut 
(Abikoff, 1980). (All of these considerations can be generalized to any 
Teichmliller space Yp.n, where n is the number of punctures. This means 
that we will get exactly the same result for world sheets which can be 
related to Riemann surfaces with n punctures.) 

4.3. P-Lines and Jenkins-Strebel Differentials 

Let Z c be the world sheet of same string object and let lq be a 
Teichmfiller P-line through E o determined by a concrete "observer." We 
know from Section 3 that if ~0 is minimally immersed into a hypersphere 
SO__+ ~I+D and if our P-line is a harmonic one, then the quadratic dif- 
ferential q has to be a Jenkins-Strebel differential. In the future we will 
assume that each P-line is determined by Jenkins-Strebel differentials, but 
we will not necessarily require that this is a harmonic line. (The harmonicity 
is not a necessary condition to have a P-line related to a Jenkins-Strebel 
differential. ) 

Now, if lq is a Teichmfiller P-line through (Eo, id), determined by a 
concrete observer eo~ ~I.D, let (K, - q )  denote a Strebel ray through the 
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point (Y,o, id) and let fK: 2o-- 's  K = K ( a ) ,  be the corresponding 
Teichm/iller map. In the Bers embedding this ray is represented by points 

q0K = { WK, z} e B2(F, L) (4.9) 

and for each ~0K the group F ~ is the group of simultaneous uniformiza- 
tions of Zo and Z K (here W K is a unique quasiconformal automorphism of 
~; which fixes 0, 1, and oo and has properties that W x l ~  has the same 
Beltrami differential as fK and W[ L is holomorphic). 

Masur (1975) has shown that the endpoint of the Strebel ray (K, - q )  
is given by the punctured model Zo or Z o and that there exists a regular 
boundary point q5 �9 0Yp c B2(F, L) such that 

Zo ~- A 2/F c~ 

i.e., I~ 0 denotes the corresponding union of appropriate Riemann surfaces 
described in Sections 4.1 and 4.2. For example, if the Jenkins-Strebel ray 
is characterized by more then one ring domain, its endpoint can consist of 
two or more Riemann surfaces (see Fig. 6). 

From the physical point of view the existence of such P-lines, deter- 
mined by a quadratic differential with closed trajectories (harmonic or 
not), seems to be the most plausible. In this case we have that any physical 
object which is related to a Lorentzian world sheet Z L cannot be stable. It 
has to be created--what is described by the so-called opening procedure 
for the horizontal cylinder of a Jenkins-Strebel ray (k, q)--and it has to 
decay--what is described by the endpoint of JS ray (k, - q ) .  Since for any 
P-line lq we have the identification of k = ( K - 1 ) / ( K +  1) with K=tg /~ ,  
where fl = n/4 - ,  �9 [~/4, n/2) and c~ has a well-defined physical interpreta- 
tion (see Section 2), the time orientability of E L guarantees that the notions 
of "creation" and "decay" are definitely distinguished and well defined. The 

Fig. 6 
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Fig. 7 

endpoints of the ray (k, q) can be interpreted as objects which take part in 
some collision process. Similarly, any element $1 of ,~0, i.e., any element of 
decay, can take part in some other collision process, i.e., be one of the 
elements of some other opening procedure (see example in Fig. 7). 

5. DISCRETE SPACE-TIME 

In this section we will show that if the Jenkins-Strebel differential deter- 
mining the P-line has only one cylinder of each type and if their heights 
and circumferences are equal to each other (we meet such a situation, for 
example, for a harmonic P-line), then only discrete set (0 c H= {e e El'D; 
e 2 ---- 1 } of "observers" can observe the same physical rules. From this fact 
we can conclude that space-time has to be discrete. 

The quadratic differentials with closed horizontal and closed vertical 
trajectories each determining only one cylinder are dense (Masur, 1979). 
This fact suggests that our assumption about one cylinder of each type 
seems to be quite reasonable and we should investigate Such a case in any 
event. 

5.1. Absolutely Extremal Self-Mapping 

Let Eo be a Riemann surface of type (p, n), p > 1, and let F be the 
Fuchsian group such that Z0 ~ U/F, where U is the upper half-plane of C. 
Let us introduce the following notation: 

Q = { the group of quasiconformal automorphisms of U} 

Q, = {cot Q; co(o)=0, co(l)= 1, co(D)= Go} 

Q(F) = {co ~ Q; coF~o -1 c M6bR} 

Qo = {cot Q;comid} 
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We say that col ~ (/)2 if and only if 

Now the set { [o9]} of equivalence classes of co �9 Q ( F ) n  Q. serves as a 
model T(F) of the Teichmiiller space ~p,.. Each element e ) �9  Q induces a 
map 

co,: Q.'-*Qn; co.(w)=a.w.~o 1; 'r149 (5.1) 

where a is some element of M6b depending on w, which transforms w- o)-  1 
onto a normalized element co . (w) �9  Q.. Any such map is holomorphic and 
it is an isometry on a complete metric space Q. with a metric induced by 
the Teichmtiller distance. If o) �9  Q. has property that 

coFco-1 ~ F 

i.e., if co belongs to the normalizer N(F)  of F in Q. (F)  = Q(F) n Q.,  then 
the modular group M(F)  is defined as 

M(F)=N(F)/Qo(F) (5.2) 

where Q0(F) = N(F)  n Qo is the centralizer of F in N(F). The group Mod F 
acts on T(F) and if the signature (p, n), p > 1, is not (2, 0), then this action 
is effective. 

Any e) �9 N(F)  induces a diffeomorphism of ~o = U/F and conversely, 
any f � 9  lifts to some element in N(F). The projection 11: 
U ~ U/F ~-Eo induces the map 

17,: N ( F ) ~ D i f f +  Y~o (5.3) 

with K e r I I , = F .  So we obtain N(F)/F~-Diff+ Eo as well as an 
isomorphism 

n,:  Qo(F) ~ Diffo(Zo) (5.4) 

Any element o). : T(F) ~ T(F) for o) �9 N(F)  is called an allowable map of 
T(F) onto itself. 

On the other hand, any orientation-preserving homeomorphism h of 
Zo onto itself also induces a nontrivial biholomorphic automorphism h* of 
~ , .  ~ T(F). This can be seen in the following way. Let us describe points 
of fp , .  as pairs (E/, f )  (where f is a quasiconformal map of the fixed 
Riemann surface Eo onto a "variable" one Ei) with the equivalence relation 
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(E~,f~)~(Z2,f2) if f2of;~: Z~-~Z2 is homotopic to a conformal map. 
The pair (Z o, id) is taken as the origin of Jp,,. Now we have 

h*: (Zi, f ) ~ ( Z i ,  fh) (5.5) 

Transformations h* form a modular group MOdpm ~M(F) ,  i.e., to each 
such h* these corresponds an appropriate element co* and vice versa. For 
p>~3 we have M o d F = H  oDiff+Eo and M o d F = H  0Diff+Zo/Z 2 for 
p=2 .  In other words M o d F  is isomorphic to the group of outer 
automorphisms Out H1 of HiZo generated by Dehn twists and Out HJZ2, 
respectively. 

Let f be a quasiconformal map of a Riemann surface Z~ onto another 
Z2 and let K(f)  denote its global dilation. The Teichmiiller metric on @,, 
is given by 

<(•1, f l) ,  (Z2, f2)> = 1 log K ( f )  (5.6) 

where f has a minimal dilatation in the homotopy class off2 of11. Let us 
denote an element of T(F)= Wp, n by z = (Yi, f )  and let X belong to the 
modular group Mod F=Modp,  n. Bers (1978) considered the problem of 
minimalizing (r, Z(z)) =- (z, h*(z)) for some self-mapping h of Zo by vary- 
ing the conformal structure Er and by varying h' in the isotopy class of h. 
If so, we call Zo and h-minimal conformal structure and we call f .  h. f - 1 
an absolutely extremal self-mapping of the Riemann surface f (Eo)=  Zi. In 
this case 

K ( f . h . f - 1 ) ~ K ( f , . . h . f / a )  Vf~: s  (5.7) 

An element Z -= h* of the modular group M p ,  n for which there exists z ~ ~p,. 
such that the function d(r) given by 

d(T) = <r, h*(~)> (5.8) 

vanishes at ~ is called elliptic (in this case �9 is a fixed point of h*: 
@,n --' ~p,n). If there exists an element ~ such that 

d(~)= inf ( r , h * ( ~ ) ) = a > 0  
.c ~ ,g-p, n 

then h* is called hyperbolic. So the function d(r) given by (5.8) has an 
absolute minimum a(h*) (equal to zero or to a > 0 )  if h* is elliptic or 
hyperbolic. Bers has proven that in the latter case h* has to map some 
Teichm/iller line onto itself [-or equivalently that K(co 2) =K(co) 2, where 
meN(F)  and co*-~h*], h* has this property if and only if h does not 
preserve any collection of admissible Jordan curves on a surface Z. 



1352 Bugajska 

A map z g h * e M o d e ,  n is elliptic if and only if h is isotopic to a 
periodic mapping. So if h has infinite order and is irreducible, then it has 
to be hyperbolic, i.e., h is an absolutely extremal self-mapping with dilata- 
tion K >  1. Thurston (n.d.) and Kra (1981) have shown independently the 
following, very important property of hyperbolic elements of the modular 
group M(F)  ~ Modp, n. 

Theorem 5.1. Let h: Eo ~ Eo be an absolutely extremal self-mapping 
with dilatation K > 1. Then K is an algebraic integer. 

5.2. Strings and Discreteness of the Symmetry Group 

Let q denote a unique quadratic differential on a compact Riemann 
surface E0 determined by some concrete "observer" e0 E Ea,D and by a 
Lorentzian structure E c of the worldsheet. Let q be a Jenkins-Strebel dif- 
ferential with only one cylinder of each type. Let ~ and/3 be closed horizon- 
tal and vertical trajectories in each of the two homotopy classes, respec- 
tively. It is known (Kra, 1981) that in this case each component of 
E 0 -  ~ w/~ is contracible. This implies that ~ w/3 intersects every admissible 
curve on Z o. Let y be an element of the Fuchsian group F whose axis 
projects onto a filling curve ~ w ~. A hyperbolic element of F which has 
this property is called essential (notice that F consists of only hyperbolic 
and parabolic elements). 

By the Dehn theorem any orientation-pr6serving home0morph~sm of 
a Riemann surface 5; o onto itself is homotopic to the product of Dehn 
twists. Let ~ and v~ denote the Dehn twists about ~ and /~, respectively. 
Then the self-mapping h of Z o given by 

h = T ~  -1 (5.9) 

is irreducible. So it induces, according to Section 5.1, a map h* which 
corresponds to some allowable hyperbolic map co of U. 

Thus we have the following situation: If q a Jenkis-Strebel quadratic 
differential with only one cylinder of each type and with ~, 13 as core curves 
of these cylinders, respectively, then: 

1. ~ u/~ is a filling curve. 

2. A hyperbolic element of F whose axis projects onto ~ u/~ is an 
essential element. 

3. The map h = z ~ z i  1 is an absolutely extremal self-mapping of 
Eo ~ U/F 

By our assumption the quadratic differential q of E o which determines the 
P-line is exactly of this type. Moreover, its properties described in the 
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introduction imply that both its ring domains R ~ = E o - F  q and 
R2 = Z o -  F q have the same heights and the same circumferences. Let us 
assume, for simplicity, that the heights hi and h2 of R~ and R2, respec- 
tively, are equal to 

ha =h2 = 1 (5.10) 

and that the circumferences c~ and c2 satisfy 

CI=C2~C (5.11) 

It is known (Masur, 1980) that the Teichmtiller map from % = (Y~o, id) to 
h*(zo) is a quasiconformal map whose Beltrami differential is given by a 
quadratic differential ql, 

q ~ = ( 1  ( c 2 - b 4 ) 1 / 2 - c )  
2 i q (5.12) 

and its global dilatation K is equal to 

2 + c 2 + c(c 2 + 4)1( 2 
K =  

2 
(5.13) 

As mentioned in Section 5.1, K has to be algebraically integral (Thurston, 
n.d.; Kra, 1981). More precisely, K is an eigenvalue of some integral matrix 
(since any holomorphic quadratic differential related to the P-line has to be 
a square of an Abelian differential of the first kind; see Section 2). So, since 
K given by (5.13) has such a property, only a discrete set (9 of elements e' 
from the unit timelike hyperboloid H of ~I,D can "produce" P-lines related 
to the above quadratic differentials. So if we assume that we can relate to 
a string world sheet some physical object and if we agree that a Lorentzian 
structure of the world-sheet is important and that a Jenkins-Strebel dif- 
ferential related to the P-line with only one horizontal and vertical cylinder 
of the same heights and circumferences play roles in physics, then only a 
discrete set of "observers" can observe the same physical rules. 

Moreover, if only a finite number of pieces of physical objects related 
to strings with compact sheets is present in nature, then we would have a 
cellular structure of our space-time (this is again a consequence of the fact 
that the circumference c is determined by an eigenvalue of a matrix with 
integer entries). 

6. P-LINES AND HAMILTONIAN SYSTEM 

The Teichmiiller space of a compact Riemann surface ]E o has many 
equivalent realizations. Some of them possess global coordinates, but some 
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do not. In this section we will treat Wp as a Teichmiiller space of marked 
hyperbolic surface. In other words, we will consider the space of hyperbolic 
surfaces together with a fixed isomorphism on Illxx to the M6bius group 
M6b~ ~ PSL(2, ~) of isometrics of the open disc; two surfaces are thought 
to be equivalent if there is an isometry between them respecting this 
isomorphism. 

6.1. Symplectic Structure on Teichmiiller Space 

Let us start with a decomposition of each surface l~ into so-called pairs 
of pants. For this let ~1 . . . . .  ~2p- 3 be a set of admissible Jordan curves on 
12. A collection of these 3 p -  3 disjoint simple closed curves separate I2 into 
2 p -  2 surfaces SI . . . . .  S2p_ 2 each of which is homeomorphic to S 2 minus 
three open discs. Each pair of pants Si, i = 1 . . . . .  2p - 2, has a hyperbolic 
structure with geodesic boundary, i.e., each component of OSi is a geodesic 
simple lop. The lengths l:, j = 1 . . . . .  3, of the boundaries of S~ may be 
arbitrarily prescribed in the interval (0, oe). 

Let us fix one such partition, say ~ ,  of a surface X0 represented by 
n = 3 p - 3  geodesics {c~:}j=~ ...... . At each c~ i we define two parameters: 

1. The length l~j = lj of the unique simple closed geodesic on 12o freely 
homotopic to ~:. 

2. The hyperbolic displacement zj between canonical points on each 
side of c~ i. 

(Let us recall that each boundary of pants has two canonical points: the 
endpoints of the length-minimizing geodesics connecting the other bound- 
aries.) An orientation of 120 gives the sign of the displacement z:. So the 
partition ~ of Xo allows us to define parameters (/j, z:) for any element Z 
of ~p. The value of l: at a marked surface Z ~ Yp is the length of the unique 
12-geodesic determined by ~:, and the twist parameters zj are defined 
similarly as described above (Abikoff, 1980). 

The coordinates (/:, zj), 1 <~j<~n, are called Fenchel-Nielsen coor- 
dinates for the Teichmfiller space Jp of marked Riemann surfaces. They are 
global coordinates and they vary in the intervals 0 < l: < ~ ,  - ~ < zj < 0% 
i.e., Wp is a cell of real dimension 6 p -  6. On Jp there also exists another 
(besides the Teichmiiller one) metric. This is the so-called Weil-Peterson 
metric. It is K/ihlerian, has negative holomorphic curvature, and is not 
complete (Wolpert, 1975). The Weill-Petterson-Kfihler form on J - (X)~  Jp 
provides a symplectic structure e~ on Y(Z)  which, of course, does not 
depend on the initial partition ~ of Xo into pairs of pants. The results of 
Wolpert (1985) tell us that if (l:, z:) are global Fenchel-Nielsen coordinates 
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given by some concrete partition P of Zo, then the symplectic form co can 
be written as 

n 

c o = -  Z dzjAdlj, n = 3 p - 3  (6.1) 
j = l  

[We recall that the mapping given by global coordinates (/j, zj) 

~-"(~0) "~ ~3p--3 X ~3p--3 (6.2) - - +  

is a real analytic diffeomorphism (Abikoff, 1980).] 
The fact that the Teichmiiller space Yp-~ 3"-(2o) can be considered as 

a symplectic manifold allows us to define the notion of its Lagrangian sub- 
manifolds. Wolpert's results suggest that each concrete partition P on 2o 
introduces two natural, mutually transverse Lagrangian foliations ~ and 

of (@, co). The foliation o~ is formed by real submanifolds of )--(2o) 
which are determined by the conditions {z;= const}~=l ...... and, similarly, 
the foliation ~ is given by the condition {/g= const}i= 1 ...... . If we think of 
a foliation W as an integrable distribution, i.e., subbundle E c T@ of a 
tangent bundle of a Teichmiiller space, then ~- is Lagrangian if and only 
if the fibers of E are Lagrangian subspaces of the fibers of T~p. The 
distribution El,  corresponding to ~1, is spanned by Fenchel-Nielsen (FN) 
vector fields 

E 1 = . . . ,  8-~n 

and 09(8/8~ i, 8/8zj)=SljSzi=O guarantees that E 1 is integrable. The 
distribution E~ is spanned by vectors {~?/Oli}i=j ...... and is integrable as 
well. Using the Petersson series 0i related to a closed loop determined by 
cq, i =  1 . . . . .  n, we have (Wolpert, 1985) 

8 i z 2 -  2 ~i=-~(Jm ) O~i and dli~--~O~i (6.4) 

Let us recall the following Weinstein (1971) theorem. 

Theorem 6.1. Let o~ be a Lagrangian foliation of some symplectic 
manifold (M,o)). Let N ~ M  be a Lagrangian submanifold which is 
transverse to ~ in the sense that 

TM[N= TN(~ E[ u 
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where E c T M  is a subbundle corresponding to ~ .  Then there is a 
diffeomorphism f :  (M,N)---~(T*N, ZN) such that f i N = I N  modulo 
identification of N with ZN; f * ~ u  = CO and f takes leaves of ~ onto the 
fibers of T*N (co u is the natural symplectic form on the cotangent bundle 
T 'N) .  

Let us fix the foliation ~ ,  Its leaves are determined by constant values 
of Z l . . . ~ .  Let ~ o ~  be given by some concrete positive numbers 
/o = (l~ . . . . .  l,). Of course ~o is transverse to ~ and we can apply 
Theorem 1. In our case (since we have an FN analytic diffeomorphism 
between Jp and ~ - 3 •  ~3p-3) there exists the corresponding map 

and we have 

f :  ~p , T*5~ (6.5) 

where ~ = ( v l , . . . ,  vn) parametrize the leaf Lfo e - ~ ,  and II: T*5~o ~ s is 
the natural projection. 

6.2. P-Lines  and the Hamiltonian Sys tem 

In this section we will consider P-lines which are related to Jenkis- 
Strebel differentials with 3 p -  3 cylinders. Let us notice that if we assume 
that we have some fixed, concrete Fenchel-Nielsen coordinates on ~ given 
by the concrete partition ~ -  {~1. �9 �9 ~3p-3}, then we can introduce a field 
~o(x) of (normed) holomorphic quadratic differentials on the leaf 5qo s 
(i.e., X s  s c Jp) uniquely determined by the following conditions: 

1. For  each X s  ~o, ~p(X) is a Jenkins-Strebel differential with 3p - 3 
cylinders. 

2. The ring decomposition of X given by the differential ~0(X) is 
related to the Jordan curves ~ , . . . ,  ~,. 

3. The circumferences of the corresponding cylinders determined by 
~o(X) are equal to ll . . . . .  In for every XE 5e o c ~ [measured in the 
q~(X) metric]. 

This last condition means that our field ~o(X) of quadratic differentials is 
uniquely determined by a partition ~ (and leaf s 

Lemma 6.1. Let ~0(X) be a Jenkins-Strebel differential on X e  @ with 
3 p - 3  cylinders related to {e;}i= 1 ....... n = 3 p -  3. The Poincar6 lengths of 
the [ei]  along the Teichmiiller geodesic lx determined by ~o(X) cannot be 
constant functions on any open interval of lx. 
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Proof For  a given Teichmtiller parameter K let / ~  be the Beltrami 
differential tangent to lx at X ~ =  lx(K). Let {l~, lai}~=z ...... be local coor- 
dinates in some neighborhood ~// of X ~ J p  related to corresponding 
Fenchel-Nielsen vector fields t~,., taz (Wolpert, 1982). There exists a 
neighborhood ~//o=ql such that the Beltrami differential /~K can be 
uniquely written in c//o as 

t~ x = ~ a,(K) t~i + b~(K) t~ (6.6) 
i = 1  

where ai, b~ are real functions of K. Let us consider the Kth model of Xx. 
We see that along lK circumferences as well as heights of corresponding 
cylinders have to vary for each i = 1, . . . ,  n. So the coefficients a~(K) as well 
as b~(K) cannot vanish in ~'o. Now we have 

(I~K, dli)= (bi(K)ta~, dl~)= b~(K) 

which completes the proof. 

cos/~p r 0 (6.7) 
p ~  #ocir fli 

Corollary. Let Lx be the Teichm(ilter line determined as in 
Lemma 6.1. Let (Ii, ri) be Fenchel-Nielsen coordinates determined by the 
partition ~ -  {el" �9 �9 ~,}. Let 5ao be a Lagrangian submanifold of (%, co) 
(where co is the Weil-Peterson-Kfihler symplectic form) given by 
l =  (ll . . . .  , In)= const. Then the Teichmfiller geodesic Ix parametrized as 

l~c(K) = (Ix(K),..., l,(K), "Cl(K ) . . . . .  %(K)) (6.8) 

cannot lie in 50o. 

Lemma 6.2. Let r be a field of Jenkis-Strebel differentials on a 
Lagrangian submanifold 50o uniquely introduced by conditions 1-3. The set 
of Teichmiiller geodesics determined by q~(X) form a one-dimensional fiber 
space over ~o. 

Proof From Lemma6.1 and from the corollary any geodesic 
l x~  ~o(X) cannot lie in ~o and any vector tangent to lx(K) cannot be 
tangent to a leaf of ~ through lx(K). So, the only thing we have to show 
is that the geodesic lx cannot return to ~0- To see this, let us notice that 
if it returns to ~o, then there has to exist a point Lx(K)= y ~ 501 ~ ~11, 
1 ~ lo, on the geodesic lx such that the vector tangent to Ix and y has to 
be tangent to 50~. However, this means that this vector would be related to 
a pure Fenchel-Nielsen twist ~= (~1 . . . .  , ~,), which, as we know, is 
impossible. 
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Now, if two lines ix and lx, given by q~(X) and (p(X'), respectively, X, 
X ' e  ~o, X # X ' ,  would cross each other, then of course the line l x has 
a return back to s by the uniqueness of the Teichmiiller map .  This 
completes the proof. 

Lemma 6.3. Let (11 . . . . .  l x ,  zl . . . . .  Zu) be Fenehel-Nielsen coor- 
dinates introduced by the partition ~ = { e l , . . . , ~ , } .  Let VXss 
I x -  (ll(K) . . . .  , l,(K), Zl(K) . . . .  , z,(K)) be the Teichmiiller geodesic deter- 
mined by cp(K) as in Lemma 6.2. Let H~ map the geodesic l x through 
X ~ 0  into H~( /x )=( l l (K)  . . . . .  I,(K), zl, z,), where X--  ( l l , . . . , l , ,  
r i  . . . .  , z,). Curves H,(/~) are the integral curves of some Hamiltonian 
system on Jp. 

Proof We can say that II f lx  is a projection of lx into a Lagrangian 
�9 ~*tT* L~. [here f is given by (6.5)]. Let us denote Ilflx by submanifold s ~ (1,z) 

~X" So along any curve ~x. X~ s we have ~zi/?K = 0. Lines ~x will form 
integral curves of some Hamiltonian system on ~p if we find a function H 
on Yp such that 

0H ~li ~H 
- -  = 0 and - -  = - -  
~l i ~3K O'r i 

along each ~x. Let us recall that l~ as a function on the Teichmiiller space 
Jp determines the section dl~ of the cotangent bundle over ~p. By 
Gardiner's (1987) formula we know that for any Beltrami differential v of 
compact surface Fuchsian group F the differential dli evaluated on the 
tangent vector v is 

(v, dl~) = 27r Re f A vO i (6.9) 

where A is a measurable fundamental domain for F and 0~ is the Petersson 
series of a simple closed geodesic [0~] on X - ~  

Let #x  be the Beltrami differential tangent to a line lx-~o(X)  at the 
point lx(K)=-XK. If Z/~ denotes the natural parameter of the terminal 
quadratic differential on XK [determined by (p(X)], then 

1 dz  K (6.10) 

The Petersson series 0~ determines a quadratic differential on X~: which in 
the natural parameter ZK has a form 0i" dz~. So dl~/dK along lx can be 
written as 

dli 1 Re 
--~=-~-K ~ fRj'OidzKd~K (6.11) 
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where Ri is an appropriate ring domain on Xx. If the expression on the 
right side of (6.11) is a function (in the worst case) of K and zi only, then 
our curves fx  will be integral curves of some Hamiltonian system on Jp 
(this condition is of course not necessary). In this case our "time" 
parameter will be equal to the Teichmiiller parameter K along the 
Teichmiiller geodesic. 

Since l = ( l l , . . . , l , )  is constant on Zo, we will denote each 
Teichmiiller geodesic lx~-~o(X) by l,. We will show that Oli/OK along l~, 

= (zl . . . . .  z=), is equal to Oli/OK along l~, = (z] . . . . .  T',) for each ~, ~' e So 
with z i=  zf. In other words, Oli/OK is the same along the Teichmfiller 
geodesic starting from those elements J fe  ~0 that have the same ith coor- 
dinate vi. To see this, let us recall how we have constructed our field q~(X). 
Namely, the set of simple, closed curves {cci}i= 1 ...... determines the parti- 
tion of X onto 2p - 2 pairs of pants. The quadratic differential ~p(X) deter- 
mines the decomposition of X onto N = 3p - 3 ring domains related to the 
same set of curves {cci}i=~ ...... . The length of the circumference of a given 
ring domain is equal to the Poincar6 length of a unique hyperbolic 
geodesic in the same homotopy class as this circumference. Since Poincar6 
lengths are constant on s the ring decomposition of X and X', X r  X', 
X, X'  ~ ~o, will contain cylinders with the same appropriate circumferences 
but with different heights. Now, from the construction of an arbitrary 
hyperbolic surface by assembling pairs of pants, we see that all elements of 
~0 with the same ith r coordinate % will have the same height hi of the 
corresponding ring Ri(X). So when we take K-models for lx(K)=l~(K) 
with zi = const we see that all rings Ri(I~(K)) for a fixed K are conformally 
equivalent to each other. This means that the relation between the 
Poincar6 length li and the Teichmiiller parameter K is, for all geodesics l~ 
with zi = const, the same. Hence, the right sdide of (6.11) can be written as 

1 Re 7c--K ~j IRy o ~ d z K d ~ K = l  f~(K''c~) (6.12) 

Thus, the lines fx(K)  form integral curves of a Hamiltonian system with a 
Hamiltonian equal to 

H=H(K,  Zl, , v , ) = ~ ,  f 1 . . .  ~-~f,.(K, "c i ) d'c i 
i 

In other words, the curves fx(K)  satisfy 

dz i OH 72=0=  
dli 1 OH 
dK ~K.~(K, ri) 

which completes the proof. 
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We can see the equality (6.12) also using the Wolpert result. Namely 
we have the following result. 

Proposition6.1 (Wolpert, 1981). Let f , :  Xo--*X t be a smooth 
deformation. Denote by g the hyperbolic line element on X t. Choose a 
closed curve ~ on Xo and denote by l(t) the length of the unique g-geodesic 
freely homotopic to f,(~) on X,. Then 

d . 
-a t(t) = f.0  L at g 

where ~0 is the g-geodesic on X0. 

Now, the differential q~ determines the fiat metric ds2= [dz[ 2 on each 
cylinder Rs, j = 1 . . . . .  n on X. Let the Teichmiiller map fK: X ~ X/( be of 
a form 

fx :  xl  ~ x'l = Kxl  
! 

X 2 "--1. X 2 ~ X 2 

where z =  x i+ ix2 and ~ = x ]  + ix'2 are holomorphic, natural coordinates 
for the appropriate cylinders on X and XK, respectively. 

Let Yl, Y2 be local coordinates on X such that 

cosh2 Y2 dy21 + dy~ --- 2(xl, xz) (dx 2 + dx2~) (6.13) 

is the hyperbolic metric on X and let y],  y~ be the same for XK, i.e., 

2 t ,2 t2 cosh Y2 dyl + dy2 = 2'(x'1, x'2) (dxi 2 + dx~ 2) (6.13') 

is the unique hyperbolic metric on XK. Let us notice that (when zi = const) 
the functions ~r(Xl, X2)----Yr and Z',(x], x~)--y'r r =  1, 2, will have the 
same form in the variables {Xl,Xz} and {x'~,x'2}, respectively, i.e., 
%'r(X~l,x~2)=zr(KXl,X2). On [~i], ~ 2 ( X I , X 2 )  = 0 ,  and on [~i]K, 
x2(KXl,X2)=O. (Here [~i] and [~;]K denote Poincar6 geodesics in the 
homotopy class of ~ and fK(~),  respectively.) Now the metric f * g  (from 
the Wolpert proposition) can be written as 

gx(x l ,  x2) = f*(cosh  2 Y'2 dY'l 2 + dY~ 2) 

( fl )' 
= cosh 2 f z (Kx l ,  x2) \Oxl dXl + ~ dxz 

(Kxl,x2) 

+ \OXl dXl + dx2 (K~,x2~ 
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By the Wolpert proposition 

dli _ ~ OgK (6.14) 
d K -  O[~i] OK 

and we see that the right side of (6.14) can depend only on Kand li(1) such 
that (6.12) is satisfied. 

By the properties of the TeichmiJller maps, the functions f~ are analytic 
and we can perform their continuations to the whole @. 

7. CONCLUSION 

In Section 4 we saw that P-lines which are related to Jenkis-Strebel 
differentials (for example, "harmonic" P-lines) describe a world sheet which 
has to be created and which has to decay. In Bugajska (1990), 1991) we 
obtained that P-line satisfying the P-condition is "associated" to reductions 
of appropriate holomorphic SL(2, C) bundles (over Riemann surfaces 
determined by this line) to the SU(2) group. This means (Bugajska, 1990, 
1991) that we have to deal with SU(2) bundles over Riemann surfaces 
equipped with a concrete connection A. If we interpret this connection 
as a gauge field of weak interaction (which is responsible for a process 
of decay), then we see that these completely different approaches yield 
the same physical situation, namely decay and creation. Moreover, 
holomorphic quadratic differentials which satisfy the P-condition seem to 
be just Jenkins-Strebel differentials, or at. least most of them (it is still an 
open question). 
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